Resonating valence bond wave function: from lattice models to realistic systems

نویسندگان

  • Michele Casula
  • Seiji Yunoki
  • Claudio Attaccalite
  • Sandro Sorella
چکیده

Although mean field theories have been very successful to predict a wide range of properties for solids, the discovery of high temperature superconductivity in cuprates supported the idea that strongly correlated materials cannot be qualitatively described by a mean field approach. After the original proposal by Anderson [P. W. Anderson, Science 235, 1196 (1987)], there is now a large amount of numerical evidence that the simple but general resonating valence bond (RVB) wave function contains just those ingredients missing in uncorrelated theories, so that the main features of electron correlation can be captured by the variational RVB approach. Strongly correlated antiferromagnetic (AFM) systems, like Cs2CuCl4, displaying unconventional features of spin fractionalization, are also understood within this variational scheme. From the computational point of view the remarkable feature of this approach is that several resonating valence bonds can be dealt simultaneously with a single determinant, at a computational cost growing with the number of electrons similarly to more conventional methods, such as Hartree-Fock or Density Functional Theory. Recently several molecules have been studied by using the RVB wave function; we have always obtained total energies, bonding lengths and binding energies comparable with more demanding multi configurational methods, and in some cases much better than single determinantal schemes. Here we present the paradigmatic case of benzene.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resonating valence bond wave functions and classical interacting dimer models.

We relate properties of nearest-neighbor resonating valence-bond (NNRVB) wave functions for SU(g) spin systems on two-dimensional bipartite lattices to those of fully packed interacting classical dimer models on the same lattice. The interaction energy can be expressed as a sum of n-body potentials V(n), which are recursively determined from the NNRVB wave function on finite subgraphs of the or...

متن کامل

d-Wave resonating valence bond states of fermionic atoms in optical lattices.

We study controlled generation and measurement of superfluid d-wave resonating valence bond (RVB) states of fermionic atoms in 2D optical lattices. Starting from loading spatial and spin patterns of atoms in optical superlattices as pure quantum states from a Fermi gas, we adiabatically transform this state to an RVB state by a change of the lattice parameters. Results of exact time-dependent n...

متن کامل

Resonating valence bond phase in the triangular lattice quantum dimer model.

We study the quantum dimer model on the triangular lattice, which is expected to describe the singlet dynamics of frustrated Heisenberg models in phases where valence bond configurations dominate their physics. We find, in contrast to the square lattice, that there is a truly short ranged resonating valence bond phase with no gapless excitations and with deconfined, gapped, spinons for a finite...

متن کامل

The emergence of Resonating Valence Bond physics in spin - orbital models

We discuss how orbital degeneracy, which is usually removed by a cooperative Jahn-Teller distortion, could under appropriate circumstances lead rather to a Resonating Valence Bond spin-orbital liquid. The key points are: i) The tendency to form spin-orbital dimers, a tendency already identified in several cases; ii) The mapping onto Quantum Dimer Models, which have been shown to possess Resonat...

متن کامل

Constructing a gapless spin-liquid state for the spin-1/2 J(1)-J(2) Heisenberg model on a square lattice.

We construct a class of projected entangled pair states which is exactly the resonating valence bond wave functions endowed with both short range and long range valence bonds. With an energetically preferred resonating valence bond pattern, the wave function is simplified to live in a one-parameter variational space. We tune this variational parameter to minimize the energy for the frustrated s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Physics Communications

دوره 169  شماره 

صفحات  -

تاریخ انتشار 2005